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Abstract
Background Metabolomic dysregulation following a meal in overweight individuals with the Metabolic Syndrome (MetS) 
involves multiple pathways of nutrient storage and oxidation.
Objective The aim of the current study was to perform an acute cross-over intervention to examine the interactive actions 
of meal glycaemic load (GL) on the dynamic responses of the plasma metabolome in overweight females.
Methods Postmenopausal women [63 ± 1.23y; Healthy (n = 20) and MetS (n = 20)] ingested two differing high-carbohydrate 
test meals (73 g carbohydrate; 51% energy) composed of either low glycemic index (LGI) or high (HGI) foods in a ran-
domised sequence. Plasma metabolome was analysed using liquid chromatography–mass spectrometry (LC–MS).
Results In the overweight women with MetS, there were suppressed postprandial responses for several amino acids (AAs), 
including phenylalanine, leucine, valine, and tryptophan, p < 0.05), irrespective of the meal type. Meal GL exerted a limited 
impact on the overall metabolomic response, although the postprandial levels of alanine were higher with the low GL meal 
and uric acid was greater following the high GL meal (p < 0.05).
Conclusions MetS participants exhibited reduced differences in the concentrations of a small set of AAs and a limited group 
of metabolites implicated in energy metabolism following the meals. However, the manipulation of meal GL had minimal 
impact on the postprandial metabolome. This study suggests that the GL of a meal is not a major determinant of postprandial 
response, with a greater impact exerted by the metabolic health of the individual.
Trial registration Australia New Zealand Clinical Trials Registry: ACTRN12615001108505 (21/10/2015)
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IDF  International Diabetes Federation
LC–MS  Liquid chromatography–mass spectrometry
LMM  Linear mixed-effects model
MetS  Metabolic syndrome
OGTT   Oral glucose tolerance test
QC  Quality control
T2D  Type 2 diabetes

Introduction

The metabolic syndrome (MetS) is a cluster of conditions 
highly predictive for the subsequent development of type 
2 diabetes (T2D) and cardiovascular disease (CVD) [1, 2]. 
MetS is characterised by the International Diabetes Federa-
tion (IDF) as central adiposity, plus two of either; elevated 
blood pressure, dyslipidaemia [low high-density lipoprotein 
(HDL), high low-density lipoprotein (LDL), and triglycer-
ides] and/or elevated fasting glucose [1]. Whilst there are 
established cut-off values for just a small number of circu-
lating biochemical intermediates, there are complex altera-
tions in the abundances of many hundreds of metabolites 
[3, 4]. Therefore, many metabolic pathways are impacted, 
contributing to heterogeneity of disease aetiologies that are 
predicted by MetS [5].

Analysis of the metabolomic complexity of MetS is 
most frequently conducted on the fasting state, although it 
is apparent that disordered metabolic flux is evident follow-
ing nutrient ingestion [6, 7]. To gain further insight into 
the transient metabolomic responses to nutrient ingestion, 
a simplified strategy is to utilise an oral glucose tolerance 
test (OGTT). The OGTT when combined with the use of 
high-throughput metabolomic technologies has further rein-
forced the complexity of biochemical pathways affected by 
MetS, including amino acid metabolism [6–10]. Unlike an 
OGTT, meals are a highly variable mix of nutrients [7, 9, 
11, 12]. For high-carbohydrate meals, the impact of the meal 
composition on postprandial glycaemic responses has been 
extensive investigated as a meal variable that can be manipu-
lated to impact on longer term health risks [13]. Lower GI of 
individual foods, or when applied to the calculated sum of 
ingested carbohydrates in the overall meal, glycaemic load 
(GL), has been used as a dietary strategy to improve meta-
bolic health [14]. Diverse metabolites indicative of adapta-
tions in multiple metabolic pathways are impacted by dietary 
manipulation of meal GL [15]; however, whether differences 
in the GL of a single meal exert impact on the complex post-
prandial metabolome is not yet known.

Therefore, the aim of this study was to examine the com-
plex metabolomic responses to mixed test meals, containing 
either high glycaemic index (HGI) or low GI (LGI) carbo-
hydrates in a cross-over study. For this, a cohort of female 
participants selected on the basis of the presence or absence 

of MetS were recruited. Analysis was undertaken of metabo-
lome profiling using hydrophilic interaction chromatography 
(HILIC) coupled with high-resolution mass spectrometry 
(HRMS). Based on the available literature, it was hypoth-
esised that using an exploratory metabolomics approach, 
dynamic alterations in amino acids and related metabolites 
would be identified and these metabolites would be a key 
discretionary feature of the altered circulating metabolomic 
responses to carbohydrate-rich meals [9, 16, 17].

Methods

Ethics

Written informed consent was obtained from all subjects. 
The experimental protocol was reviewed and approved by 
the University of Auckland Human Participants and Eth-
ics Committee (Ref #014501). The trial was retrospectively 
registered at Australia New Zealand Clinical Trials Registry 
(ANZCTR; ACTRN12615001108505).

Participants

The study recruited 40 postmenopausal Caucasian women 
from the Auckland region through newspaper advertisements 
and from the university community. Eligible subjects were 
required to have a BMI between 18 and 34 kg/m2 and aged 
between 55 and 70 years. Individuals with a medical history 
of cardiovascular or metabolic disease/conditions, and who 
were currently taking medications that may interfere with 
study endpoints were excluded from further participation in 
the trial. The allocation ratio was 1:1 into two groups; MetS, 
assigned according to the IDF guidelines [1] or who did not 
have established risk factors and body mass index (BMI) was 
in the healthy range (18 to 25 kg/m2).

Due to the complexity of untargeted metabolomics, there 
remains no standard method for sample size estimation [18, 
19]. Therefore, practically, we adopted a sample size based 
on previous research examining postprandial responses to 
test meal ingestion plus the economic, ethical, and logistical 
constraints of our study design and funding sources [20].

Experimental design

The randomised cross-over trial was conducted at the Mau-
rice and Agnes and Paykel Clinical Research Unit at the 
Liggins Institute, University of Auckland, Auckland, New 
Zealand. The two mixed meals (Table 1) were formulated to 
be equal in all macronutrients; carbohydrates (73 g), protein 
(40 g), fat (13 g), and energy (~ 2380 kJ), with the primary 
difference being the glycaemic index (GI) of the included 
carbohydrates. Each food item was matched directly to those 
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in the University of Sydney GI Online Database [21]. Foods 
that were not available in the database were matched to the 
available foods listed with similar characteristics, to achieve 
estimates of GI value. The recommended formula for the 
calculation of daily GL was based on the previous studies 
[22] and is as follows:

Participants were advised to maintain their dietary habits, 
body weight, and physical activity levels, with strenuous 
exercise, dietary supplements, and alcohol consumption 
suspended 2 days before trial days. Subjects arrived fasted 
(overnight) where anthropometric data were collected before 
a catheter was inserted into an antecubital vein and a base-
line sample (time 0) was taken followed by consumption 
of the breakfast within 10 min. Four postprandial samples 
were collected for metabolomics analysis (30, 60, 120, and 
300 min) into EDTA blood collection tubes (BD, Mt Wel-
lington, New Zealand). Samples were centrifuged at 1500×g 
for 15 min at 4 °C, and the supernatants collected in micro-
tubes and stored at − 80 °C until analysis.

Metabolomic analysis

The extraction was performed using a slightly modified pro-
tocol based on the method used by [23]. The modifications 
to the protocol included a reduced volume of plasma due to 
oversaturation observed on the analytical instruments used at 
higher volumes. In addition, a 1:1 (v/v) chlorform:methanol 

n
∑

i=1

GI of each food item × CHO content in food.

mixture deviated from the Folch protocol which is a 2:1 
(v/v) chloroform:methanol composition. Briefly, 100 µl 
were extracted by liquid–liquid extraction using a chilled 
(− 20 °C) mixture of 800 µl chloroform:methanol (1:1), fol-
lowed by agitation and held at − 20 °C for 30 min. 400 µl 
of water was then added, the sample vortexed for 30 s and 
centrifuged for 15 min at 12,500×g at room temperature to 
separate the aqueous (upper) and organic (lower) phases. 
250 µl of the aqueous phase was evaporated to dryness 
under a stream of nitrogen and reconstituted in 300 µl of 
acetonitrile:water (1:1) containing 0.1% formic acid and 
10 µg/ml  d2-tyrosine as an internal standard. Blank sam-
ples were prepared exactly as the test samples, but plasma 
was replaced with Milli-Q water. Samples were randomised 
before extraction to avoid systematic analytical batch and 
run-order effects. To verify and maintain data quality, a qual-
ity control (QC) sample, comprising a pooled extract of all 
samples, was injected once every ten samples. Retention 
time, signal/intensity, and mass error of internal standards 
were monitored to check instrument response variability 
and retention time shifts. Normalisation of metabolites was 
obtained in both positive and negative ionisation modes, and 
thus, there was no run-order impact on the analysis (Figure 
S1).

Liquid chromatography–mass spectrometry

Plasma extracts and blanks were analysed through LC–MS 
streams using both positive and negative ionisation modes 
separately, as previously described [24]. Briefly, the Thermo 
LC–MS system (Thermo, Waltham, MA, USA) consisted of 

Table 1  Macronutrient 
composition of each meal

WPI whey protein isolate, GI glycaemic index, GL glycaemic load

Serving size Calories (kcal) Protein (g) Fat (g) Carbo-
hydrates 
(g)

GI GL

Low glycaemic
 WPI protein (g) unflavoured 30 116 27.7 0.3 0.15 0 0
 Anchor butter (g) 10 72 < 1.0 8.1 < 1.0 0 0
 Grains bread (slices) 3 297 12.6 4.7 48.5 41 27
 Fructose (g) 25 100 0 0 25 0 3

Total 585 40.1 13.1 73.6 51 30
Macronutrient composition (%) 28.1 20.1 51.6
High glycaemic
 WPI protein unflavoured (g) 30 116 27.7 0.3 0.15 0 0
 Anchor butter (g) 12.75 92.3 < 1.0 10.4 < 1.0 0 21
 White bread (slices) 4 272 11.2 2.4 46.6 70 0
 Maltodextrin (g) 9 36 0 0 9 110 44
 Gatorade orange (ml) 300 73.2 0 0 18 89 13

Total 589 38.9 13.1 73.6 269 79
Macronutrient composition (%) 27.1 20.0 51.3
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Acela 1250 quaternary UHPLC pump, a PAL auto-sampler 
fitted with a 15,000 psi injection loop. A Merck polymeric 
bead-based ZIC-pHILIC column (100 mm × 2.1 mm, 5 µm; 
Merck, Darmstadt, Germany) was used for chromatographic 
separation. The column was connected to an Exactive 
Orbitrap mass spectrometer with electrospray ionisation 
(Thermo, San Jose, CA). The mobile phase was a combina-
tion of acetonitrile-formic acid (99.9:0.1, v/v; solvent A) and 
water–ammonium formate (16 mM, pH 6.3; solvent B). The 
samples were separated at 25 °C with a flow rate of 250 µl/
min and a gradient elusion programme as follows: 97% A 
(0–1 min), 97–70% A (1–12 min), 70–10% A (12–14.5 min), 
held at 10% A (14.5–17 min), and then returned to 97% 
A (17–18.5 min). Finally, the gradient was held for further 
5.5 min to equilibrate prior to the next injection. Samples 
were run in both positive and negative ionisation modes 
separately. The positive ionisation parameters were as fol-
lows: spray voltage, 3.5 kV; capillary temperature, 325 °C; 
capillary voltage, 90 V, tube lens 120 V. Negative ionisation 
parameters were as follows; spray voltage, − 3.0 kV; capil-
lary temperature, 325 °C; capillary voltage − 90 V, tube lens 
− 100 V. The nitrogen source gas desolvation settings were 
the same both modes (arbitrary units); sheath gas 40; auxil-
iary gas 10; sweep gas 5. Mass spectral data were collected 
in profile data acquisition mode covering a mass range of 
m/z = 55–1100 with mass resolution setting of 25,000 and a 
maximum trap fill time of 250 ms using the Xcalibur soft-
ware package (Thermo, San Jose, CA).

Data integration

XCMS software [25] was used for peak detection, alignment, 
and noise elimination. The resultant peak table generated 
was subjected to run-order correction and batch normalisa-
tion utilising pooled QC samples and applying the LOESS 
regression model [26]. Features with a CV of > 30% within 
the pooled QC samples were excluded.

Statistical analysis

Metabolomics data were analysed with a linear mixed-effects 
model (LMM) approach. Statistical analysis was performed 
using R (version 3.1.2) [27]. The “nlme” package was used 
to perform LMM [28]. Fixed effects/predictors for the LMM 
were assigned as; ‘meal’ which is the difference between the 
LGI and HGI meal; ‘status’ which represents the difference 
between controls and MetS; ‘time which denotes differences 
across the five time points’ and the random effect being ‘par-
ticipant’. For LMM, p values of overall effects was deter-
mined using conditional F tests with Kenward–Roger cor-
rection degrees of freedom as implemented in the ANOVA 
function from the package car (version 2.0-21). P values 
for differences between levels of categorical predictors were 

determined using parametric bootstrapping as implemented 
in lme permmodels function, with 1000 permutations. There 
are three levels of results produced by LMM: the signifi-
cance of the overall model for each metabolite, the signifi-
cant of the independent variables and their interactions at the 
status, meal, time, meal-by-time, status-by-time, meal-by-
status-by time (three-way interaction) and (for post hoc test-
ing) the significance of between-groups and within-groups 
effects at each time point. Multiple comparisons were cor-
rected by controlling the false discovery rate (FDR; p < 0.05) 
[29], using the R “predictmeans” package (version 1.0.1) 
[30]. The tidyverse package in R was used for graphics and 
additional analyses [31].

Compound identification

Annotation was performed on significant features generated 
from LMMs for each interaction by matching peak identifi-
cation data (accurate mass and retention time) against a local 
library of authentic standards run under identical conditions. 
If no hit was obtained, significant features were searched 
against the public domain databases HMDB and METLIN 
[32]. Mass error tolerance of 5 ppm was used. Feature anno-
tation was based on the level of confidence according to The 
Metabolomics Standards Initiative [33] (Table S1).

Results

The women recruited into the study on the basis of the MetS 
classification had larger waist circumference (p < 0.001), 
higher BMI (p < 0.001), elevated fasting plasma glucose 
(p = 0.003), and triglycerides (p < 0.01), compared to 
the healthy women. They also had reduced plasma HDL 
(p = 0.027) compared to the women within the healthy 
weight range (Table 2). In response to the meals, the MetS 
women exhibited greater postprandial insulin concentrations 
(15 min to 120 min, post-meal; (Fig. 1a; p < 0.05) after both 
the HGI and LGI meals. There was also a status × time inter-
action (p = 0.011) for postprandial glucose response, with 
MetS women displaying greater plasma glucose concentra-
tions at 30 and 45 min postprandial, compared to the healthy 
women (Fig. 1b; p < 0.05).

A total of 203 metabolite features were extracted, with 
140 and 63 detected in positive and negative ionisation 
modes, respectively. In the postprandial phase, 23 metabo-
lites exhibited significant interactions after LMM analysis, 
with either three-way interactions (status × meal × time) or 
two-way interactions (either status × time or meal × time). 
These interactions were predominately AA species. Fig-
ure 2 includes those features that were distinguished on the 
basis of a statistically significant three-way interaction. At 
30 min, the LGI meal was higher than the HGI meal only in 
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healthy women for leucine and valine, respectively (Fig. 2a, 
b; p < 0.05). In addition, valine was higher at 60 min in 
the HGI meal than the LGI meal only in healthy women 
(Fig. 2b; p = 0.02). Phenylalanine and tryptophan at 30 min 

were higher in the LGI meal compared to the HGI meal 
only in healthy women (Fig. 2c, d; p < 0.05). In addition, the 
healthy women had a higher abundance of phenylalanine at 
30 min compared to the MetS women only when the LGI 
meal was consumed (p = 0.005). Tyrosine demonstrated two 
three-way interactions; the first being a difference only in the 
LGI meal with an increased peak in MetS women compared 
to healthy women, at 120 min. The second difference was 
following the HGI meal at 120 min, being higher in MetS 
women compared to healthy women (Fig. 2e; p = 0.038). 
Arginine was higher in the HGI meal compared to the LGI 
meal at 120 min only in healthy women. Also for arginine 
at 120 min, in the HGI meal only, it was higher in healthy 
women compared to MetS women (Fig. 2f; p < 0.05).

Figure 3 shows the AA’s that demonstrated a two-way 
interaction. Threonine and proline were reduced in the MetS 
women, compared to healthy women at 60 min and 120 min 
(Fig. 3a, b; p < 0.05). At 30 min, alanine and uric acid were 
higher in MetS women compared to healthy women irre-
spective of meal (Fig. 3d, e; p < 0.05).

Metabolites other than amino acids that were also 
identified as exhibiting a three-way interaction are shown 
in Fig. 4. Urea was higher in MetS women compared to 
healthy women only post-HGI meal at 30 min (Fig. 4a; 
p = 0.015). At 30 min, lactic acid was higher in MetS 
women, compared to healthy women, in the HGI meal 
only (Fig.  4b; p = 0.028). However, at 60  min, lactic 
acid was higher in MetS women compared to the healthy 

Table 2  Baseline clinical 
characteristics

Values represent means ± SEM. Amino acid values measured in µmol/l
HOMA-IR homeostatic model assessment of insulin resistance
Significance was determined by Student’s t test. *p < 0.05, **p < 0.01, ***p < 0.001 compared with MetS 
adults

Healthy adults (n = 20) MetS adults (n = 20)

Subject characteristics
 Age (years) 63.4 ± 1.00 63.00 ± 1.26
 BMI (kg/m3) 24.3 ± 0.70 29.00 ± 0.66***
 ALT 12.59 ± 1.71 21.81 ± 2.78*
 HOMA-IR 1.48 ± 0.15 3.00 ± 0.27***

IDF measurements for MetS
 Waist circumference (cm) 80.4 ± 2.2 93.8 ± 1.7***
 Systolic blood pressure (mmHg) 121.6 ± 3.0 139.2 ± 3.0***
 Diastolic blood pressure (mmHg) 67.0 ± 2.2 72.0 ± 2.3
 Triglycerides (mM) 0.91 ± 0.06 1.40 ± 0.10*
 HDL (mM) 2.1 ± 0.08 1.7 ± 0.1**
 Fasting plasma glucose (mmol/l) 5.51 ± 0.12 6.0 ± 0.11*

Clinical characteristics
 % Body fat total 36.25 ± 2.10 45.01 ± 1.80
 Creatinine (mmol/l) 74.17 ± 3.73 56.38 ± 6.48
 AST (mmol/l) 43.19 ± 17.1 32.6 ± 6.71

Fig. 1  A Insulin and B glucose postprandial response. *p < 0.05 
between healthy and MetS. #p < 0.05 between LGI and HGI. Error 
bars represent standard error of mean
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women post-LGI intake only (Fig. 4b; p = 0.020). Creatine 
demonstrated two three-way interactions, with the first 
being in the LGI intake only, where healthy women had 
a higher abundance compared to MetS women (Fig. 4c; 
p = 0.02). The second interaction was only seen in the HGI 
meal only, where healthy women had a higher amount of 
creatine compared to MetS women (Fig. 4c; p = 0.005). 
Carnitine reduced after the LGI compared to the HGI at 
30 min only in healthy women (Fig. 4d; p = 0.01). The 

remaining features that exhibited differences from the 
LMM are shown in Figure S2.

Discussion

The current study compares the plasma metabolomic 
responses in postmenopausal women with or without MetS 
to two carbohydrate-rich meals, differing on the basis of 
GL. Using an untargeted LC–MS strategy, the results 

Fig. 2  Postprandial amino acid which exhibited a three-way interac-
tion. Values represent mean ± SEM in peak intensity. ηp < 0.05 repre-
sents difference between LGI and HGI in healthy women, λp < 0.05 
represents difference between LGI and HGI in MetS women, 

δp < 0.05 difference between healthy and MetS women for HGI, 
εp < 0.05 difference between healthy and MetS following consump-
tion of LGI
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demonstrate a predominance of differences in circulating 
AAs between the healthy and MetS women. There were 
far fewer and more subtle differences in the circulating AA 
response between the HGL and LGL meals. Of the responses 
evident, these tended to be within the first hour following the 
meal, with no effect evident over the subsequent 2 h of anal-
ysis. The untargeted metabolomic analysis also identified 
metabolites related to energy utilisation pathways, including 
lactic acid and carnitine that exhibited a greater post-meal 
excursion in the women with MetS.

Despite the design of the meals to alter the calculated 
GL, the measured blood glucose concentrations demon-
strated only a small transient heightened response in the 
MetS women, following ingestion of the HGL meal. For 
all study participants, blood glucose exhibited a bi-phasic 
response, with a nadir between 45 and 60 min after meal 
ingestion. Although the bi-phasic nature of blood glucose 
response to a mixed meal has been previously reported 
[34], the rapid onset and extent of the blood glucose 
nadir was unexpected. In following a large cohort using 

Fig. 3  Postprandial significant metabolites differentiated by a two-way interaction. Values represent mean ± SEM in peak intensity. * Denotes a 
significant difference between MetS and healthy women. # Represents a significant difference between HGI and LGI
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continuous glucose, monitoring the nadir in blood glucose 
is typically reported 2–3 h after a meal and may corre-
spond with the onset of hunger [35].

Increased circulating BCAA has been demonstrated to be 
predictive of diabetes risk [36]. The current study and previ-
ous analysis demonstrated that there is no marked change in 
the plasma BCAA response to a mixed high-carbohydrate 
meal in individuals with MetS [16]. The measured differ-
ences in leucine occurred within 30 min of the meal and 
relative to the change in leucine from baseline was very 
small. It is unlikely that this subtle difference in leucine is 
of biological relevance. Plasma valine abundances fluctu-
ated following all meals, with no evidence of a post-meal 
increase.

The dispensable amino acid tyrosine exhibited the ten-
dency for increased abundances from 60 min till the study 
completion (300 min) in the MetS women, irrespective of 
the meal. These results are consistent with the observation 
of greater plasma tyrosine responses following different high 
protein meals in those individuals exhibiting insulin resist-
ance [16]. This speculatively corroborates with the previous 
studies that have demonstrated a reduced clearance can aug-
ment the biosynthesis of norepinephrine and dopamine, both 

of which have been linked to glucose homeostasis [37, 38]. 
Arginine exhibited an increase in healthy women following 
the HGI meal, with MetS women demonstrating reduced 
levels. Arginine is critical in the activation and regulation of 
both AMPK and mTOR [39] and is central for nitric oxide 
synthesis, suggesting a role in energy regulation and vas-
cular homeostasis [40, 41]. Further analysis is required to 
determine the extent to which these observed changes in 
tyrosine impact on downstream metabolites and function.

In the current study, further two-way associations in the 
response of several amino acids and energy metabolites was 
demonstrated. Of the identified AAs, alanine was notable 
in that the post-meal response tended to be greater in the 
women with MetS. Alanine provides a physiological balance 
for glucose and proline via glutamate in the tricarboxylic 
acid cycle (TCA) [42]. Alanine aminotransferase (ALT), 
is responsible for conversion of pyruvate to alanine, which 
was increased in MetS women in this trial and consistent 
with the previous observations suggesting liver dysfunction 
[43]. Concomitantly, alanine was elevated in MetS women 
in the postprandial phase for both meals, suggesting that its 
kinetics are largely influenced by metabolic risk. Conversely, 

Fig. 4  Non-amino acids that exhibited a three-way interaction. Values 
represent mean ± SEM in peak intensity. ηp < 0.05 represents differ-
ence between LGI and HGI in healthy women, λp < 0.05 represents 

difference between LGI and HGI in MetS women, δp < 0.05 differ-
ence between healthy and MetS women for HGI, εp < 0.05 difference 
between healthy and MetS following consumption of LGI
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plasma threonine and proline tended to be reduced in the 
MetS group, irrespective of the meal.

Of particular interest is whether variations in the GL of a 
meal can be identified to modify the concentration of metab-
olites indicative of altered oxidative metabolism. Lactic acid 
is the end product of glycolysis, with plasma concentrations 
indicative of flux in the Cori cycle, where it is exported from 
glycolytically active tissues into the plasma for synthesis to 
glucose in the liver [44]. Lactic acid concentrations have 
been reported as being elevated in insulin resistant individu-
als in the first 2 h following an OGTT, being speculated 
to be an indicator of the impaired oxidative capacity [45, 
46]. In this study, there were subtle and transient impacts 
of both MetS and meal GL on the plasma concentrations of 
lactic acid up until 60 min. The small and transient nature of 
these changes suggests that in the context of the meal used 
in this study, the dynamic response of lactic acid is poorly 
indicative of MetS and did not differentiate between meals 
of high or low GI.

Fasted creatine has previously been associated with MetS 
[47] and plays a fundamental role in energy buffering. Cre-
atine immediately increased by 15% in healthy women, 
whilst in contrast, it decreased by 10% in the MetS women. 
These differences, as with lactic acid, were evident only in 
the first postprandial sample (30 min) and did not subse-
quently persist. Such differences may suggest an acute dif-
ference in energy utilisation, but more careful analysis is 
required.

There are important considerations and limitations of the 
current study. These investigations are limited to older Cau-
casian females who are postmenopausal, and hence, caution 
is required in generalising these results to males, younger 
adults, or to multiple ethnicities. Furthermore, whilst metab-
olomics has provided significant insight into the differences 
between postprandial profiles of healthy and MetS women, 
it does not provide a detailed understanding of the varia-
tions in the either the rate of absorption or the rate of tissue 
clearances due to breakdown of meals between phenotypes. 
Additionally, the choice of meal is likely to impact on the 
extent to which these results can be generalised. Future stud-
ies can address this issue by incorporating stable isotopes 
into the food, enabling the precise analysis of metabolite 
fluxes. Given that there was no formal estimation of sample 
size calculation and the untargeted nature of the LC–MS 
analysis, this study should be viewed as a potential pilot to 
provide guidance for future investigations.

Conclusion

In summary, the use of an untargeted metabolomic analy-
sis of plasma samples in postprandial women demonstrated 
small and transient differences in a range of AAs and several 

energy-related metabolites for overweight women, charac-
terised as having the MetS, when compared to aged-matched 
leaner and metabolic healthier women. Further, the choice 
of meals used in this study did not markedly impact on the 
measured metabolomic responses. This study therefore can-
not convincingly demonstrate whether differences in meal 
GL are important in altering postprandial metabolism in a 
manner that can either be beneficial for body weight regu-
lation and metabolic health. However, the data emphasise 
the complexity of the postprandial responses to meals, com-
posed of whole food, with the continued need to develop 
a more detailed understanding of the systems’ biological 
responses to differing meal types.
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